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The solution of the problem of the motion of a drop, whose size is small compared with the mean free path of th e molecules of 
the gas surrounding the drop, in temperature and concentration fields is presented. The approach proposed earlier [1, 2] is used, 
supplemented by taking into account the phase transition on the drop surface. © 2004 Elsevier Ltd. All rights reserved. 

Up to recently, the problem of the motion of aerosol drops in a thermal diffusion chamber under the 
action of thermal diffusiophoresis and the gravity force, taking into account phase transitions on the 
drop surface, has been solved either in the case of a continuum [3, 4] or in the case of free-molecular 
flow [5]. The model used in [3, 4] gave the best qualitative agreement with experiment [5] compared 
with the earlier approach used in [1, 2, 6]. Some quantitative disagreement was regarded as being due 
to imperfections in the model and certain simplifications employed when carrying out the calculations. 
In particular, no account was taken of the fact that, due to condensation growth of the drop, a transition 
occurs from one mode to another. In other words, the continuum model, employed in [3, 4], inadequately 
describes the dynamics of the drop at the initial stage of its evolution from the instant when it is formed 
to when it reaches its size, when the Knudsen number becomes comparable with unity. It is logical to 
supplement the model by a separate consideration of the initial stage and subsequent matching of the 
solution with the results [3, 4]. In this paper, when considering the drop motion at the initial stage it 
is more convenient not to use the "dusty gas" model, but to carry out a direct calculation of the 
momentum transferred to the drop by the gas molecules [2]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

An investigation of the dynamics of a small drop in a thermal diffusion chamber requires, in principle, 
the same approach as in the case of a large drop, considered previously [3, 4]. The equation of motion 
retains its previous form (everywhere henceforth, unless otherwise stated, summation is carried out over 
the subscript j) 

d(ml~) Vst ) " n j m j d m  - F - m g  
dt n lm I dt 

where nj and mj are the density and mass of the molecules of sort j, v is the drop velocity in a laboratory 
system, and Vst is the velocity of Stefan flow of the gas mixture. However, the expressions for the rate 
of change of the mass rn of the drop and the force F acting on it, which occur in the equation, change. 
We will consider both of these characteristics in succession. 

2. THE C H A N G E  IN THE MASS AND THE RADIUS R OF THE DROP 
D U R I N G  A PHASE T R A N S I T I O N  

We will first calculate the balance of the number of particles which undergo a phase transition on the 
drop surface. The part played by the molecules of the neutral gas-carrier can be ignored in this case, 
since they take no direct part in the change in the drop size (although they play a decisive role in the 
heat balance, which indirectly affects the growth rate). We will use the well-known gas-kinetic expression 
for the number of gas molecules which collide the drop surface, 

+Prikl. Mat. Mekh. Vol. 68, No. 3, pp. 470-473, 2004. 

421 



422 S.P. Bakanov 

Nj(i) = nj( oj(Ti))rtR 2 (2.1) 

The subscript j = 1 corresponds to the vapour, j = 2 corresponds to the inert gas (air), (vj(Ti)) = 
8kT/(rcmj) is the mean velocity of molecules of sort j, k is Boltzmann s constant and Ti is the gas 

temperature. We can also similarly write the number of gas molecules which evaporate from the drop 
surface by replacing the density of the vapour in the surrounding gas by the density nls of the saturated 
vapour at the drop temperature Te. 

We have the following expression for the number of reflected molecules of the inert gas 

N~e) = n2(122(Te))rcR 2 (2.2) 

The density of the saturated vapour is connected with its pressurep~ s by the relation 

nl,(Te) = pls(Te)/(kTe) (2.3) 

In addition to the temperature, the pressure Pls also depends on the radius of curvature of the drop 
surface 

Pls(Te) = p(lOs)(Te) + o~(Te)/R (2.4) 

where p]° s) (Te) is the pressure of the saturated vapour above a plane surface and ct(Te) is the surface 
(interphase) tension. 

Bearing in mind the fact that the drop is small, we will assume the temperature to be the same over 
the whole volume of the drop. We then have the following equation for the change in the mass of the 
drop 

dm ml(N(li)_N(le))= 8R2 ( T ,fTi} 
dt - ( l pl( ' ) -  Pl"(re)-- e e (2.5) 

Hence we also obtain an equation for the change in the drop radius 

dR { 2 ,1 
dt - Xpe(2,(Ti)) I (2.6) 

where Pe is the drop density. 

3. CALCULATION OF THE Q U A S I - E Q U I L I B R I U M  T E M P E R A T U R E  
OF THE DROP 

To find the drop temperature we will calculate the heat balance on the drop due to collisions of molecules 
of the surrounding gas with it. We will use the well-known gas-kinetic expression for the energy flux on 
the drop surface 

W(li)(Ti) = 2kTiN(li)(Ti) (3.1) 

The expression for the energy transferred to the drop by neutral molecules has a similar form (with 
the subscript i replaced by the subscript 2). Hence, we must add the energy which is released as a result 
of the phase transition of the vapour on the drop surface. As a result, we have the following expression 
for the energy flux on the drop 

,~,w~i)(Ti) + m,N(ti)(Ti)L (3.2) 

Correspondingly, for the outflow of energy when gas molecules evaporate (are reflected) from the 
drop surface we have an expression which differs from (3.2) by having the subscript i replaced by e. 
Here we have assumed the condition of complete accommodation, i.e. the temperature of the evaporated 
(reflected) molecules is assumed to be equal to the drop temperature. We will neglect the dependence 
of the specific heat of the phase transition L on the temperature. 
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The heat balance equation, taking Eq. (2.5) into account, therefore has the following form 

Ldmdt + w~e)(Te)] : 0 (3.3) 

or, after substituting the above expressions, 

L 8 R  F  f,(ra- p,,(L)--ff e [ + 2kTi[N~i)(Ti) 4- N~i)(Ti)] 

-2kTe[N~e)(T,) + N~e)(Te)l = 0 (3.4) 

The system of equations (2.6), (3.4), taking expression (2.4) into account, determines the change in 
the size and quasi-equilibrium temperature of the drop during a phase transition at a specified gas 
temperature Ti. This system can be solved by numerical methods without difficulty. 

4. C A L C U L A T I O N  OF THE FORCE ACTING ON THE DROP 

As before, we will assume the drop temperature to be the same over the whole volume. In this case 
evaporation of the volatile component, like the reflection of the non-volatile component (in the case 
of complete accommodation), occurs uniformly over the whole drop surface. This in turn means that 
the integral recoil momentum of the reflected and evaporated molecules is equal to zero. Hence, when 
calculating the force acting on the drop from the side of the gas, one need only take into account the 
momentum of the molecules which collide with its surface. 

A gas-kinetic calculation [7] gives the following expression for the momentum which the gas molecules, 
which collide with its surface, transfer to the drop in unit time 

2 1  2 
F =  ~njm](oi)  (~Xj-Zj)r t4~R (4.1) 

Here 

= 4_ [ (_l)jn2m2v ] 5 Xj 4nkF-~oj)LU+ njm] stj +r2Zi, Zj = djngradnlo+ajgradlnT 

2 n l m  I n nl n / J  f / l ~ X  u~2tgraanzo+t(rgraamz ), n = ~,nj, nzo = -- 10St -~ 2~'r"njm] nln2 n 

u is the velocity of the centre of mass of the gas mixture with respect to the drop, kr is the thermal 
diffusion coefficient of the mixture and D1; is the diffusion coefficient. 

5. C A L C U L A T I O N  OF THE PARAMETERS dj AND aj 

When calculating the parameters dj and aj we will retain the scheme described above, and also the 
notation employed previously [8]. We will therefore denote the parameters dj and a j, referred to the 
second component of the gas mixture, by d_ 1 and a_l. The required parameters are found by solving 
the following two independent systems of equations 

s = + [  s = + l  

E asars = [~r' Z d'ars = 8r; r = -1 ,0 ,+1 (5.1) 
s = -1 s = -1 

The right-hand sides of these equations are equal to zero, with the exception of 

0 ~ 1 = - ' l ' ~ n f ( O l ( T i ) ) ,  
154~ 3 2 , ~ /  

0~-1 "~ 8n I (DE(Ti)) ,  8 0 -  2 n l n  2 (5.2) 
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The  coefficients ars of  systems (5.1) are found  using the following relat ions 

mokT ~-- M2kT , - -  MlkT  
a°° = E ' a°l = - 5 ( C -  1) , , /mo2--~lE,  ao_ , = 5 ( C -  1)~/mo2----~2 E 

r---=-- kT{11 _ B - 2A) 
a l_  1 = - ~ M I M 2 - - ~ -  ~ 

5 k T f  l . 2 + , ,  2, ~ 5kTnl 
al l  = ~ { ~ . ( 6 M 1  3 M z ) - M ~ B +  2 M I M 2 A j + ~  (5.3) 

21.tin2 

5kT [ l 2 2 2 ~ 5kTn2 
a 1-1 = ~ ' ~ 4 ( 6 M 2 + 5 M 1 ) - M 1 B + 2 M 1 M 2 A I  + 

- 1v12~, [ 21.t2n 1 

rnj 2 
m 0 = ~ m j ,  Mj = - - ,  E = ~nmoD12 

mo 

(gj is the viscosity of  t h e j t h  c o m p o n e n t  of  the gas). 
These  expression apply to any type of spherically symmetr ic  molecules,  possessing only energy of  

t ranslat ional  motion.  For  rigid elastic spherical  molecules  the coeff icientsA, B and C take a part icularly 
simple form: A = 2/5, B = 3/5 and C = 6/5. 

6. C O N C L U S I O N  

The  expressions ob ta ined  for  the force acting on the drop  (4.1) and for  the ra te  of  change of  its mass  
(2.5) must  be  subst i tuted into the equa t ion  of  mot ion  of  the drop.  A calculat ion (generally numerical )  
for specific condit ions (pressure,  t e m p e r a t u r e  and composi t ion  of the gas mixture,  and the proper t ies  
of  the aerosol  nucleus), carried out  at the initial stage of  evolution of the drop, and subsequent  matching 
with the result  ob ta ined  in [3, 4], in our  opinion el iminates  some of  the quant i ta t ive d i sagreement  with 
the results of  m e a s u r e m e n t s  which remain  at the presen t  t ime. 
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